Optimal Bandwidth Sharing in Multi-Swarm Multi-Party P2P Video Conferencing Systems

Chao Liang, Miao Zhao, and Yong Liu
Networking, IEEE/ACM Transactions on (Volume:19, Issue: 6)
Multi-swarm multi-party P2P conferencing

- Helpers: Helping relaying the resource

- Swarms:
 - Sources: Peers who generate video streams
 - Receivers: Peers who watch the streams
Distribution tree within conferencing swarm

Fig. 2. Different Types of Distribution Trees.
Problem and solution

- **Problem**: Peers in the conferencing swarm do not have enough bandwidth to support video stream from sources.

- **Solution**: Cross-swarm bandwidth sharing
 - Independent swarms
 - Cooperative swarms
Cross-swarm bandwidth sharing: Independent swarm

- Proximal approximation algorithm
 - Source multicast rate adjustment
 - Helper bandwidth allocation
 - Swarm coordinator:
 ■ Communicate with helpers
 ■ Maintain the Lagrangian multiplier

- Marginal utility driven algorithm
 - Intra-swarm source rate adaptation
 - Inter-swarm helper bandwidth allocation
Cross-swarm bandwidth sharing: Independent swarm (cont.)

Fig. 5. System evolution with proximal approximation based algorithm.
Cross-swarm bandwidth sharing: Independent swarm (cont.)

Fig. 7. Simulation results of marginal utility based algorithm. There are three conferencing swarms at the beginning and swarm 4 joins the system in the middle.
Cross-swarm bandwidth sharing: cooperative swarm

- Marginal utility driven algorithm
 - Swarm sharing adjustment

Fig. 8. System evolution in cooperative conferencing systems. Swarm 3 shares its bandwidth resources with other swarms.