A CROSS-LAYER DESIGN FOR SCALABLE MOBILE VIDEO

Szymon Jakubczak, Dina Katabi
There are two limitations for today’s mobile video:
- Cannot reduce bandwidth consumption by wireless broadcast
- Lacks robustness to wireless interference and errors

SoftCast - change the network stack to act like a linear transform:
- Video quality commensurate with its channel quality
- Increases robustness to interference and errors
SoftCast

- Error-Resilient Compression
 - SoftCast compresses the video using a weighted 3-dimensional DCT transform
 - Transmit all the non-zero chunks
 - Sort the chunks in decreasing order of their energy and picks chunks as possible to fill the bandwidth
SoftCast(2)

- Error Protection
 - Scaling the magnitude of the DCT components in a frame
 - Let $x_i[j], j = 1 \ldots N$, be a random variables drawn from a distribution \mathcal{D}_i and remove its mean with zero mean, and variance λ_i
 - The mean of \mathcal{D}_i will send as metadata

\[
u_i[j] = g_i x_i[j], \text{ where } g_i = \lambda_i^{-1/4} \left(\frac{P}{\sum_i \sqrt{\lambda_i}} \right).
\]
Resilience to Packet Loss

- Each SoftCast slice is a linear combination of all chunks
- SoftCast produces these slices by multiplying the chunks with the Hadamard matrix
- Hadamard matrix is an orthogonal transform composed entirely of +1s and -1s
Encoder

- The encoding process can then be represented as
 \[Y = HGX = CX \]

- G is a diagonal matrix with the scaling factors, H is the Hadamard matrix
Decoder

- Use Linear Least Square Estimator (LLSE) to estimate DCT components
 \[X_{LLSE} = \Lambda_x C^T (C \Lambda_x C^T + \Sigma)^{-1} \hat{Y} \]
- At high SNR (small noise, the entries in \(\Sigma \) approach 0)
 \[0 X_{LLSE} \approx C^{-1} Y \]
- The loss of a packet corresponds to the absence of a row in \(Y \)
 \[X_{LLSE} = \Lambda_x C_{*i}^T (C_{*i} \Lambda_x C_{*i}^T + \Sigma_{(*i,*i)})^{-1} \hat{Y}_{*i} \]
Implementation

- Use the GNURadio codebase to build a prototype of SoftCast

- Physical Layer
 - Implementation leverages the OFDM implementation in the GNURadio
 - The transmitter’s PHY passes SoftCast’s packets directly to OFDM
Implementation (2)

- Video Coding
 - Implemented SoftCast in Python (with SciPy)
Evaluation environment

- Testbed: in the 20-node GNURadio testbed

- Modulation and Coding: SoftCast is transmitted directly over OFDM

- Wireless Environment: The carrier frequency is the same as that of 802.11b/g

- Metric: compare the schemes using the Peak Signal-to-Noise Ratio (PSNR)
Evaluation

- Performance of SoftCast (in black) vs. single-layer MPEG4
Evaluation of multicast

- The receivers’ SNRs are 11 dB, 17 dB, and 22 dB.
Evaluation of robustness to Packet Loss
Impact of available wireless bandwidth
Conclusion

- SoftCast adopts an integrated design for video and PHY layer coding

- Making the whole network stack act as a linear transform

- Improves video quality for multicast users, eliminates video glitches caused by mobility, and increases robustness to interference and channel errors.