Introduction

• As increasing multimedia content becomes available, the optimization of users’ experiences on multimedia given limited resources is more important

• Challenges
 • Unknown mechanism for human to judge the quality -> expensive process of collecting subjects’ opinions is usually required for satisfactory QoE estimation
 • There are many dynamic QoS factors that affect QoE in users’ minds, e.g., bitrate, resolution, delay, ...
QoE Modeling

• Standard approach
 1) random (grid) sampling in QoS space
 2) subjects are asked to score on those samples
 3) modeling the relationship between QoE and QoS

• Goal of this article
 • actively select (informative) samples to better model the relationships between QoS parameters and QoE with fewer samples
Multidimensional IQX (MIQX) Modeling

• Goal: predict the QoE based on QoS
 \[y = f(x) \]

• IQX model
 \[f(x_1) = \alpha \cdot e^{-\beta \cdot x_1} + \gamma \]

• Multidimensional IQX model (MIQX)
 \[f_\theta(x) = \alpha \cdot e^{-\phi(x)w} + \gamma, \quad \theta = [\alpha \gamma w] \]
Training Multidimensional IQX (MIQX) Model

• \(\text{min} \) 2-norm errors between \(f(x_i) \) and \(y_i \) for all \(i \)

\[
E(\theta, y, X) = \sum_{i=1}^{N} (f_\theta(x_i) - y_i)^2 = (y - F_\theta(X))^T (y - F_\theta(X)) \\
= (\alpha \cdot e^{-\Phi(X,w)} + \gamma \cdot \mathbb{1} - y)^T (\alpha \cdot e^{-\Phi(X,w)} + \gamma \cdot \mathbb{1} - y),
\]

• Valid range

\[
\Theta = \{[\alpha, \gamma, w] \mid QoE_{\text{min}} \leq \gamma \leq QoE_{\text{max}} \land 0 \leq \alpha \leq (QoE_{\text{max}} - QoE_{\text{min}})\},
\]

\[
\theta^* = \arg\min_{\theta \in \Theta} \sum_{i=1}^{N} (f_\theta(x_i) - y_i)^2 + \lambda w^T w
\]
Adaptive Sampling for QoE Modeling

• Design the sample presentation order such that they can **reduce the number of samples** required to build an accurate model
 • Grid and Random Sampling
 • Online Space-filling Sampling
 • Active Sampling
Grid and Random Sampling

- **Uniform grid sampling**
 - easy to implement
 - requires users to set the number of samples in advance (the number cannot be arbitrary)

- **Random sampling**
 - randomly and uniformly acquires the next sample
 - some large areas in the sampling space may not covered by any sample when the budget is insufficient
 - wastes the annotation in some cases, e.g., two very similar consecutive samples
 - biased sampling results for a subject (e.g., many more high-quality videos compared to low-quality videos)
Online Space-Filling Sampling

• Maximin sampling
 • Select the i-th sample x_i as farther from the chosen samples x as possible
 $$x_i = \arg \max_{x \in S} \min_{x_k \text{ for } k=1,...,(i-1)} (d(x, x_k))$$
 • Maximin sampling tends to acquire samples near the boundaries of valid range initially
Active Sampling

• Select the next sample that is most informative for estimating the model parameters

• Information estimation: probabilistic MIQX model
 • Error: normal $\mathcal{N}(0, \sigma_v)$
 • α, γ are uniform within their range
 • w is Gaussian with a mean and covariance matrix of 0 and $\frac{1}{\lambda}$

\[
P(\theta | y, X) \propto P(y | \theta, X)P(\theta | X) \\
\propto e^{-(y-F_\theta(X))^T(y-F_\theta(X))} e^{-\lambda w^Tw}
\]
Active Sampling

- Uncertainty sampling
 - sample the most uncertain point for the current model in the feature space
 - uncertainty: the variance of the prediction of the current QoE-QoS model \(\sigma^2(f_\theta(x)) \)

\[\Rightarrow \text{select } \arg\max_{x \in S} \sigma^2(f_\theta(x)) \text{ to minimize the overall prediction variance} \]
Active Sampling

- Sample with the highest prediction variance is usually the sample on the edge of the valid feature space -> suffer from outlier more easily
- focus on minimizing the uncertainty of the prediction from highly probable x (considering $P(x)$)
 - Minimizing prediction variance -> Q-optimal
 - Maximizing the information gain
 -> mean marginal information gain (MMIG)

Prob. of observing QoS parameters
Q-Optimal

• Minimize the variance weighted by the feature distribution

\[V(X, y) = \int_{x_u} P(x_u) \left(\sigma^2 \left(f_{\theta(y,x)}(x_u) \right) \right) dx_u \]

• Next sample

\[x_i^* = \arg\max_{x_i \in S} \left(V(X, y) - V((X; x_i), (y; y_i)) \right) \]

\[\approx \arg\max_{x_i \in S} \int_{x_u} P(x_u) \frac{g(x_i)^T A^{-1} g(x_u)}{\sigma^2 f_{\theta(y,x)}(x_i) + \sigma^2} dx_u, \]
MMIG

• Minimize the uncertainty of the prediction probability distribution $P(f_\theta(x_u))$
 • average uncertainty over all valid features x_u on the basis of entropy

$$U(X, y) = \int_{x_u} P(x_u) \text{ent}(P(f_\theta(y, x)(x_u))) dx_u$$

• next sample

$$x_i^* = \arg \max_{x_i \in S} (U(X, y) - U([X; x_i], [y; y_i])) = \arg \max_{x_i \in S}$$

$$\left(-\frac{1}{2} \int_{x_u} P(x_u) \log \left(1 - \frac{g(x_i)^T A^{-1} g(x_u)}{\sigma^2(f_\theta(y, x)(x_u))(\sigma^2(f_\theta(y, x)(x_i)) + \sigma^2)}\right) dx_u\right)$$
Performance Evaluation

1. Collect QoE scores from video clips with randomly selected QoS parameters
2. Change the collection order offline to evaluate the sampling methods
Experiment Design

- Video characteristics: bitrate, frame rate, resolution, temporal complexity, and spatial complexity
- Normalized feature space \([0,1]\)
- Use inverse of QoE scores as the prediction target of the regression task: dissatisfaction score
- Interaction between features exist: add 2\(^{nd}\)-order interaction terms to the model
Dataset

- 3318 annotations from 97 subjects using Amazon Mechanical Turk (MTurk) and Bounty Worker
 - 7-level scale
- 10-second H264 video randomly chosen from Big Buck Bunny and Tears of Steel
 - Bitrate: [100, 2000] kbps
 - Frame rate: [5, 30] fps
 - Resolution: \{480, 600, 720, 840, 960, 1080\} height
- Severe subject bias \rightarrow normalization
Evaluation Sampling Methods

• Conduct 200 trials and make each method collect different samples in each trial by injecting some randomness into the sampling process
 • 70% for training and 30% for testing
 1. Randomly select 10 sample from the training pool
 2. Let the method choose the next query

• Evaluation
 • **Prediction accuracy**: similarity between the prediction and the annotations in testing pool
 • relative squared error (RSE), linear correlation coefficient (LCC), and Spearman rank-order correlation coefficient (SROCC)
 • **Parameter accuracy**: RMSE of w
Regression Models

• MIQX (with 2nd-order interaction terms)
• Linear regression (with 2nd-order interaction terms)
• Nadaraya-Watson kernel regression with Gaussian kernel
• Random forest
Maximin vs. Random Sampling

- Maximin sampling leads to more accurate model
Active vs. Maximin Sampling

• For MIQX model
Field Experiment for Realistic Online Setting

• Experiment design
 • Several trials for each sampling method
 • Randomly assign each subject to a trial
 • In each trail, the query for each subject is determined online based on the previous queries
 • Each subject rate 40 samples
 • 5 subjects (200 samples) collected for each trail
 • The first 10 queries for each subject are randomly selected
 • Shift scores based on the updated average score for bias removal
 • Uniformly sample 3000 QoS parameters (2500 kbps)
Single Stimulus

• One stimulus in each round of rating
• The reference video clip is shown to the subject at the beginning of the task (10000 kbps, 1080p, 30 fps)
• Methods: random, maximin, and Q-optimal
• 3600 samples, 18 trials (6 trials for each method)
Maximin vs. Random Sampling

- MIQX > others, maximin > random (except RF)
Active vs. Maximin Sampling

• Maximin > Q-optimal
 • Contradicting to the findings in offline setting

• Repeat offline experiment: Q-optimal > Maximin
Difficulty I (Habituation Effect)

- Subjects tend to give higher scores than usual if they just saw a clip with very bad quality.
Difficulty I (Habituation Effect)

- MIQX model estimated using data from random sampling can predict scores from maximin sampling much better than it can predict scores from active sampling.
Difficulty II (Individual Differences)

- Each subject has different standards for their judgement.
- Active sampling has largest performance differences -> Active sampling might try to fit the QoE model of the current subject instead of fitting the average QoE model of the crowd.

<table>
<thead>
<tr>
<th>Method</th>
<th>Source of test data</th>
<th>RSE</th>
<th>LCC</th>
<th>SROCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Sampling</td>
<td>The same trial</td>
<td>0.734 ± 0.014</td>
<td>0.567 ± 0.008</td>
<td>0.497 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>Different trials</td>
<td>0.839 ± 0.008</td>
<td>0.558 ± 0.003</td>
<td>0.489 ± 0.004</td>
</tr>
<tr>
<td>Active Sampling</td>
<td>The same trial</td>
<td>0.643 ± 0.011</td>
<td>0.637 ± 0.007</td>
<td>0.605 ± 0.007</td>
</tr>
<tr>
<td></td>
<td>Different trials</td>
<td>0.742 ± 0.006</td>
<td>0.597 ± 0.003</td>
<td>0.565 ± 0.003</td>
</tr>
<tr>
<td>Maximin Sampling</td>
<td>The same trial</td>
<td>0.609 ± 0.012</td>
<td>0.675 ± 0.007</td>
<td>0.570 ± 0.031</td>
</tr>
<tr>
<td></td>
<td>Different trials</td>
<td>0.621 ± 0.006</td>
<td>0.676 ± 0.003</td>
<td>0.563 ± 0.003</td>
</tr>
</tbody>
</table>
Double Stimulus

• Reference video vs. compressed video
• Random, maximin, and hybrid (maximin+MMIG):
 \[x_i^* = \arg \max_{x_i \in S} (U(X) - U([X; x_i], [y; y_i]) + \rho \cdot \left(\min_{x_k \text{ for } k=1\ldots(i-1)} (d(x_i, x_k))) \right), \]
• 10 trials (200 samples labeled by 5 subjects)
Limitations

• Active learning still provides some bias in long-run

<table>
<thead>
<tr>
<th>Training</th>
<th>Testing</th>
<th>RSE</th>
<th></th>
<th>LCC</th>
<th></th>
<th>SROCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.501 ± 0.005</td>
<td>0.568 ± 0.005</td>
<td>0.669 ± 0.007</td>
<td>0.710 ± 0.003</td>
<td>0.664 ± 0.004</td>
<td>0.603 ± 0.005</td>
</tr>
<tr>
<td>Maximin</td>
<td>0.512 ± 0.004</td>
<td>0.560 ± 0.005</td>
<td>0.644 ± 0.006</td>
<td>0.704 ± 0.003</td>
<td>0.667 ± 0.004</td>
<td>0.606 ± 0.005</td>
</tr>
<tr>
<td>Random</td>
<td>0.530 ± 0.005</td>
<td>0.562 ± 0.005</td>
<td>0.642 ± 0.006</td>
<td>0.699 ± 0.003</td>
<td>0.668 ± 0.003</td>
<td>0.603 ± 0.005</td>
</tr>
</tbody>
</table>

• The considered bitrate range
 • relative low compared with popular online video services, e.g., YouTube
 • The online workers might not have the adequate skills or hardware to identify the subtle difference among high-quality videos, e.g., 1 vs. 2 Mbps
 • Need to cover Larger interval
Conclusion

• Appropriate sampling methods are required to cope with the large parameter space

• Considering
 • Sampling strategies: random, maximin, active (uncertainty, q-optimal, and MMIG)
 • Models: linear regression, kernel regression, random forest, and MIQX
 • Testing methods: single stimulus and double stimulus
Issue

- Active learning may perform worse than passive learning due to habitual effect and individual differences
 - Active sampling+space-filling sampling
 - Take previous QoE scores into account
 - Model user diversity
 - Provide additional training for subjects
 - Filter unreliable subjects