Real-time PM2.5 mapping and anomaly detection from AirBoxes in Taiwan

G. Huang¹ L.-J. Chen² W.-H. Hwang³ S. Tzeng⁴ H.-C. Huang⁵
Introduction

- What is PM2.5
- What is AirBox
- Anomaly detection
 - Clustering-based methods
 - Machine-learning methods
 - Statistical methods
Contribution

- Real time PM2.5 concentration at any location with its estimation error bar
 - Kriging approach
- A spatio-temporal control chart that can automatically monitor anomalous measurements by utilizing neighboring AirBox information.
AirBox Data

- 1283 AirBoxes across Taiwan from Jan. 1 to Feb. 28
- Precision is 111m * 102m
- Aggregate the data into hourly data at each location using the simple average
- Few unusual measurement that are either much higher or lower than nearby
Methodologies

\[y(s) = \beta' \phi(s) + \eta(s) = \sum_{k=1}^{K} \beta_k \phi_k(s) + \eta(s); \quad s \in D, \]

Suppose data \(z \equiv (z(s_1), \ldots, z(s_n))' \)

With addictive white noise \(z = y + \epsilon \)

where \(y = (y(s_1), \ldots, y(s_n))' \), \(\epsilon \sim N(0, \sigma^2 \epsilon I) \)

\(C(s, u) = \text{cov}(y(s), y(u)) = \sigma^2 \exp(-\|s - u\|/\lambda) \)
Robust Method

\[\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^k} \sum_{i=1}^{n} \rho \left(\frac{e_i}{\hat{\sigma}} \right) \]

\[e_i = z(s_i) - \beta' \phi(s_i) \]

\[\rho(x) = \begin{cases}
 x^2/2, & \text{if } |x| \leq c \\
 c|x| - c^2/2, & \text{if } |x| > c
\end{cases} \]

Choose \(c = 1.345 \) which gives an efficiency of 95\% if the error are normal distributed.

\[\hat{y}(s_0) = \hat{\beta}' \phi(s_0) + c(s_0; \hat{\theta})' \left(\Sigma(\hat{\theta}) + \hat{v}_\epsilon^2 I \right)^{-1} \left(z - \left(\hat{\beta}' \phi(s_1), \ldots, \hat{\beta}' \phi(s_n) \right) \right) \]
Anomaly Detection

• Baseline: \(\{ \hat{y}_t(s) : s \in D \} \)

• Standardized residuals
 \[r_t(s_i) = \frac{z_t(s_i) - \hat{y}_t(s_i)}{\hat{\sigma}_t(s_i)} ; \quad i = 1, \ldots, n, t = 1, \ldots, T \]

\[r_t(s_i) \] has normal distribution if the parameter are known

High positive \(r \) \(\quad \rightarrow \) It is higher than neighbor observation

Low negative \(r \) \(\quad \rightarrow \) It is lower than neighbor observation

do not need to specify a specific neighborhood range
Anomaly Detection

- Control chart of each AirBox: \(r_t(s_i); i = 1, \ldots, T \)
- Control limits: 3 standard deviation: \(|r_t(s_i)| > 3 \)
- Ranking: \(\text{RMSE}_i = \left\{ \frac{1}{|T_i|} \sum_{t \in T_i} (r_t(s_i))^2 \right\}^{1/2} \)
- AirBoxes with high RMSE indicate that they tend to produce outlying observations
Decompose RMSE

\[\text{RMSE}_i = \left(b_i^2 + V_i \right)^{1/2} , \]

\[b_i = \frac{1}{|T_i|} \sum_{t \in T_i} r_t(s_i) , \]

\[V_i = \frac{1}{|T_i|} \sum_{t \in T_i} \left\{ r_t(s_i) - \frac{1}{|T_i|} \sum_{t \in T_i} r_t(s_i) \right\}^2 \]

- **Classification**

<table>
<thead>
<tr>
<th>High RMSE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi <= -3</td>
<td>Average standardize residual is above control limit</td>
</tr>
<tr>
<td>Bi >= 3</td>
<td>Average standardize residual falls below control limit</td>
</tr>
<tr>
<td>-3 < Bi < 3</td>
<td>Tends to have high variation</td>
</tr>
</tbody>
</table>
Analysis Result

- Locations with fewer AirBox has higher error values
- Unusual large or small PM2.5 value is shown in fig. D
Anomaly Detection Result

- (a) Ranking RMSE value
- (b) The corresponding biases of (a)
- (c) Classify high RMSE into 3 groups
Compare with Other Method

• Criteria

\[
\text{RMSE} = \left\{ \frac{1}{100} \sum_{i=1}^{100} (\tilde{y}(s_i^*) - z(s_i^*))^2 \right\}^{1/2},
\]

\[
\text{MAE} = \text{median} \left\{ |\tilde{y}(s_1^*) - z(s_1^*)|, \ldots, |\tilde{y}(s_{100}^*) - z(s_{100}^*)| \right\}
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Averaged RMSE</th>
<th>Averaged MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest neighbor</td>
<td>15.16</td>
<td>5.18</td>
</tr>
<tr>
<td>Inverse distance weighting</td>
<td>12.37</td>
<td>4.46</td>
</tr>
<tr>
<td>The proposed kriging</td>
<td>11.88</td>
<td>4.09</td>
</tr>
</tbody>
</table>
Conclusion

• Proposed method is able to detect potential emission sources, malfunctioned AirBoxes, and AirBoxes that are put indoors

• AirBoxes provides very high spatial and temporal coverage but they have much more higher error than those large monitoring stations